3D Printed Lenses: Rapid prototyping and low-cost microscopy for the life sciences


Overview: High-quality glass lenses are commonplace in the design of optical instrumentation used across the biosciences. However, research-grade glass lenses are often costly, delicate and, depending on the prescription, can involve intricate and lengthy manufacturing - even more so in bioimaging applications. This seminar will outline 3D printing as a viable low-cost alternative for the manufacture of high-performance optical elements, where I will also discuss the creation of the world’s first fully 3D printed microscope and other implementations of 3D printed lenses. Our 3D printed lenses were generated using consumer-grade 3D printers and pose a 225x materials cost-saving compared to glass optics. Moreover, they can be produced in any lab or home environment and offer great potential for education and outreach. Following performance validation, our 3D printed optics were implemented in the production of a fully 3D printed microscope and demonstrated in histological imaging applications. We also applied low-cost fabrication methods to exotic lens geometries to enhance resolution and contrast across spatial scales and reveal new biological structures. Across these applications, our findings showed that 3D printed lenses are a viable substitute for commercial glass lenses, with the advantage of being relatively low-cost, accessible, and suitable for use in optical instruments. Combining 3D printed lenses with open-source 3D printed microscope chassis designs opens the doors for low-cost applications for rapid prototyping, low-resource field diagnostics, and the creation of cheap educational tools.

Speaker: Dr Liam Rooney; Research Fellow, School of Infection & Immunity, University of Glasgow.

Date: 10:00 - 22 May 2025 (GMT-4)

Platform:


Institute for Biological and Medical Engineering at Pontificia Universidad Catolica de Chile
San Joaquin Campus - Ave Vicuña Mackenna 4860, Macul, Santiago, Chile

Follow Us